References

Scientific publications

High Intensity Focalized Ultrasound for the treatment of localized prostate cancer. Haute Autorité de Santé / Department of Medical and Surgical Procedures Assessment / December 2010

Tooaked Early Prostate Cancer Clinical Team Received the Inaugural Tayyaba Hasan IMPACT Award at the 17th World Congress of the International Photodynamic Association.https://news.yahoo.com/tookad-early-prostate-cancer-clinical-171959711.html

Tables

Table 1: The tumour (T) parameter of the TNM classification of prostate cancer
Table 2: Acceptable range of PSA related to age
Table 3: Probability of prostate cancer according to PSA blood test (source: EAU guidelines 2020)
Table 4: Prostate cancer detection rates by mpMRI based on tumour volume and ISUP classification (source: EAU guidelines 2020)
Table 5: ISUP prostate cancer grade groups in correlation with the Gleason score grading
Table 6: No Difference in oncological or incontinence/erectile dysfunction results between open/laparoscopic/robotic approach (source: EAU guidelines 2020)
Table 7: Recommendations of the EAU regarding the indication of radical prostatectomy in the different risk groups (source: EAU guidelines 2020)
Table 8: Strong scientific evidence of the absence of efficacy of radical treatments compared to simple surveillance on mortality (source: EAU guidelines 2020)
Table 9: Mortality rate after radical prostatectomy in the 3 most reliable studies in the field (source: EAU guidelines 2020)
Table 10: Recommendations of the EAU regarding the indication of EBRT or HRT in the different risk groups (source: EAU guidelines 2020)
Table 11: Efficacy and toxicity results of the main EBRT RCTs
Table 12: Recommendations of the EAU regarding the indication of brachytherapy in the different risk groups (source: EAU guidelines 2020)
Table 13: Results of LDR brachytherapy (source: EAU guidelines 2020)
Table 14: Results of combined radiation therapies EBRT + HDR brachytherapy
Table 15: Differences between the active surveillance and watchful waiting (source: EAU 2020)
Table 19: Active surveillance criteria according to different institutions or learning societies
Table 17: Recommendations of the EAU regarding the indications of AS in the LR and IR risk groups (source: EAU guidelines 2020)
Table 18: Cancer Specific Survival (CSS) and Overall Survival (OS) results in active surveillance at 10 years (source EAU 2020)
Table 19: d’Amico classification updated

Pictures

Picture 1: Pathological constitution of the normal prostatic gland
Picture 2: The chesnut is a very common comparison to the prostatic gland size and shape
Picture 3: With age an increasing prostate size is the rule not the exception
Picture 4: Urinary sphincter immediately underneath the prostate (by B. Batard)
Picture 5: Neuro-vascular bundles (NVB) running posteriorly alongside the prostate. In 75% the NVBs are bilaterally well-delimited and dissectable, and in 25% the NVBs are spread and impossible to preserve. Before an ablation of the prostate, the NVBs anatomy is not predictable (by B. Batard)
Picture 6: Zonal anatomy according to Mc Neal description
Picture 7: Transversal cross sectional view of the different zones of the prostate
Picture 8: 3D sagittal cross sectional view of the different zones of the prostate
Picture 9: Molecular composition of testosterone
Picture 10: 3D molecular structure of the androgen-receptor
Picture 11: Different definitions of prostate cancer according to Pr O. Cussenot
Picture 12: A thoughtful sentence
Picture 13: Worldwide incidence and mortality rates (source WHO)
Picture 14: The important role of age in the mortality rate due to prostate cancer
Picture 15: Cussenot-Tassin hereditary transmission model (by courtesy of Pr O. Cussenot)
Picture 16: a) Digital rectal examination on a sagittal anatomical view (by B. Batard)
 b) Presence of the tumour into the prostate according to the T stage
Picture 17: 3D molecular structure of the Prostatic Specific Antigen (PSA)
Picture 18: Transrectal ultrasound (TRUS) with the immediate proximity of the prostate to the US probe (by B. Batard)
Picture 19: Axial T2W sequence (by courtesy of Dr F. Tobolski - Integratome)
Picture 20: DWI sequence (by courtesy of Dr F. Tobolski - Integratome)
Picture 21: DCE sequence (by courtesy of Dr F. Tobolski - Integratome)
Picture 22: PIRADS 1 to 5 illustration (by courtesy of Dr F. Steiger - Klinik Beau-Site)
Picture 23: A superconducting magnet with a spatial resolution of about 0.1 mm compared to 1 mm today
Picture 24: A first milestone in the prostate imaging approach (Liddell HT et al. J. Urol. 1986)
Picture 25: Application of an enema few hours before the biopsy procedure (by B. Batard)
Picture 26: Antibiotrophylaxia to reduce the risk of acute prostatitis - To take orally 1-2 hours or intravenously just before the biopsy
Picture 27: a) Transrectal xylocaine injection into the prostate-seminal vesicle angle b) Transperineal xylocaine injection under the perineal skin (by B. Batard)
Picture 28: Lateral decubitus position - only for transrectal biopsies
Picture 29: 12 spots scheme applied without distinction amongst patients
Picture 30: EAU first biopsy set scheme
Picture 31: 3D prostate with unreached anterior lesion (in brown)
Picture 32: High resolution targeted biopsy procedure based on a MRI/US fusion system
Picture 33: Biopsy gun with a Tru-cut needle
Picture 34: Sagittal view of transperineal targeted biopsies (by B. Batard)
Picture 35: Ginsburg protocol scheme (source: European Urology)
Picture 36: The d’Amico classification with the risk of recurrence
Picture 37: The first radical prostatectomy at the John Hopkins Hospital (Baltimore, US) and the concomitant publication of the first series of 4 cases
Picture 38 bis: Surgical site of a perineal radical prostatectomy
Picture 39: Barré-Chauveau technique - Santorini plexus + urethral section
Picture 40: Laparoscopic installation with abdominal positioning of trocars
Picture 41: Ablation of the prostate with immediate proximity of the urinary sphincter explaining the incontinence rate (by B. Batard)
Picture 42: The Theratron junior a Cobalt-60 radiation therapy equipment in use in the 50’s
Picture 43: Three-dimensional conformal radiation therapy (3D-CRT) radiation fields
Picture 44: Intensity modulated radiation therapy (IMRT) radiation fields
Picture 45: Stereotaxic body radiation therapy (SBRT) radiation fields

49: Active surveillance protocols are based on the ancient diagnostic triad
50: Reasons and proportions of discontinuation of active surveillance (source: Movember GAP3 Consortium)

Picture 51: Multifocal prostate cancer lesions on mpMRI (by courtesy of Dr F. Tobolski - Integratome)
Picture 52: Multifocal prostate cancer with a more important lesion of the right lobe
Picture 53: The index lesion is the most important lesion and leads the prognosis of the disease
Picture 54: Metastatic spread of the disease starting from the index lesion (in black) while the other lesion plays (yellow and green) a secondary role. The mechanism of metastasis spread is either direct from the prostate or indirect by a first metastase which will latter spread. (source: Liu W. Nat. Med. 2009)

Picture 55: Percutaneous CT scan-guided ablation of a kidney tumour by cryotherapy
Picture 56: Prostate biopsy mapping record
Picture 57: MRI at day-7 of an hemi-ablation of the right lobe
Picture 58: Sagittal view of the installation during the illumination phase

Picture 59: Lancet Oncology publication February 2017 - Level 1 scientific evidence
Picture 60: From the laser activation of Tookad® to the cells death
Picture 61: Compilation of titles of Prostate Photodynamic Therapy-related scientific articles
Picture 62: The accuracy of the necrosis by the Prostate Photodynamic Therapy Technique
Picture 63: The protective role of the capsule on the integrity of the erectile nerves

Picture 64: The HIFU device contains 2 transducers : low-intensity for the imaging and high-energy for the treatment
Picture 65: The Joule-Thompson effect
Picture 66: The production of iceball at the tip of cryoprobes
Picture 67: Biological effect of cryotherapy on cells and targeted tissue

Picture 68: Sagittal view of a cryotherapy procedure with intraprostatic iceballs

Picture 69: Disruption of the cell membrane by electroporation (adapted from Tsong TY. Biophys J 1991)

Picture 70: Sagittal view of the IRE installation and needle-like electrodes placement (by B. Batard)

Picture 71: Placement of the needle-like electrodes according to the triangulation method

Picture 72: Milestones of systemic treatments in advanced prostate cancer

Picture 73: Publication princeps of C. Huggins and C.V. Hodges in Cancer Research in 1941

Picture 74: The hypothalamus pituitary gland axis

Picture 75: Port a catheter on the right breast

Picture 76: Molecular structure of abiraterone acetate

Picture 78: PARP inhibitor blocking the MMR system pathway leading to tumoral cell death (source: Cancer UK)
Inactivation of a T-cell by PD-L1 and PD-L2 ligand binding to PD-1 receptor (source: www.keytrudahcp.com)

Competitive binding of pembrolizumab on the PD-1 receptor blocking the interaction with PD-L1 and PD-L2 and restoring the T-cell immune response (source: www.keytrudahcp.com)

Mechanism of action of Sipuleucel-T (source: Handy CE and Antonarakis ES. Future Oncol. 2018)

Different failure definitions give different results (source: Miyake M. et al. Prostate International. 2019)

Connecting experts knowledge to reach a consensus

12-millimeter ISUP 2 prostate cancer lesion perfectly suitable for focal therapy

The ProtecT study published in one of the most famous medical review in 2016

A very delicate and accurate introduction of the needles

Therapeutic scheme including focal therapies as alternative to radical treatments in selected LR and favourable IR groups

FDA Oncology Center of Excellence Public Workshop report (2020)

A patient-doctor relationship based on full understanding and confidence

Videos

Video 1 : What is the prostate? (Prostate - Anatomy of the prostate)

Video 2 : Prostate cancer is a slow growing disease (Everything you need to know about prostate cancer)

Video 3 : Genetic impact on prostate cancer (Prostate Cancer - Epidemiology)

Video 4 : Undeniable scientific evidence (Validated treatments - Surgery)

Video 5 : The brachytherapy technique (Validated treatments - Brachytherapy)

Video 6 : The proof of concept of focal therapy based on the index lesion (Optional treatments – Focal therapy – Proof of Concept)

Video 7 : MRI/US fusion : the missing link (Optional treatments - Focal therapy - The MRI-based targeting concept)

Video 8 : An efficient devascularization of a tumour after activation of Tookad® by the laser light (Optional treatments - Phototherapy)

Video 9 : The deep science behind the prostate photodynamic therapy (Optional treatments - Phototherapy - Scientific basis)

Video 10 : Animation of the Prostate Photodynamic Therapy Technique (Optional treatments - Phototherapy - Technique)

Video 11 : The Prostate Photodynamic Therapy Technique commented with Prs AR Azzouzi and J Rassweiler (Optional treatments - Phototherapy - Technique)

Video 12 : The prostate photodynamic therapy procedure (Optional treatments - Phototherapy - Technique)

Video 13 : Indications of the prostate photodynamic therapy (Optional treatments - Phototherapy – Indications/Results)

Video 14 : Results of the prostate photodynamic therapy (Optional treatments - Phototherapy – Indications/Results)

Figures

Figure 1 : Proportion of benign, ISUP 1 and ISUP ≥ 2 related to PSAD (Prostate cancer – Diag. Tools)

Figure 2 : Risk of prostatic cancer depending on the PI-RADS v2 score (source : EAU guidelines) (Prostate cancer – Diag. Tools – mpMRI)